Коррозия алюминия – разрушение металла под влиянием окружающей среды.
Для реакции Al3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.
Температура плавления алюминия — 660 °C.
Плотность алюминия — 2,6989 г/см3 (при нормальных условиях).
Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.
Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!
Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.
Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.
При нагревании алюминий может реагировать с некоторыми неметаллами:
2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;
4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;
2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.
Алюминий и его реакция с водой
Впервые алюминий был получен лишь в начале XIX века. Cделал это физик Ганс Эрстед. Свой эксперимент он проводил с амальгамой калия, хлоридом алюминия и ртутью.
Кстати, название этого серебристого материала произошло от латинского слова «квасцы», потому что именно из них добывается этот элемент.
Квасцы [Wikimedia]
Квасцы – это природные минералы на основе металлов, которые объединяют в своем составе соли серной кислоты.
Раньше алюминий считался драгоценным металлом и стоил на порядок дороже, чем золото. Объяснялось это тем, что металл было довольно сложно отделить от примесей. Так что позволить себе украшения из алюминия могли только богатые и влиятельные люди.
Японское украшение из алюминия [Wikimedia]
Но в 1886 году Чарльз Холл придумал метод по добыче алюминия в промышленном масштабе, что резко удешевило этот металл и позволило применять его в металлургическом производстве. Промышленный метод заключался в электролизе расплава криолита, в котором растворен оксид алюминия.
Алюминий — очень востребованный металл, ведь именно из него изготавливаются многие вещи, которыми человек пользуется в быту.
Применение алюминия
Благодаря ковкости и легкости, а также защищенности от коррозии, алюминий является ценным металлом в современной промышленности. Из алюминия изготавливают не только кухонную посуду — он широко используется в авто- и авиастроительстве.
Также алюминий является одним из самых недорогих и экономичных материалов, так как его можно использовать бесконечно, переплавляя ненужные алюминиевые предметы, например, банки.
Алюминиевые банки
Металлический алюминий безопасен, но его соединения могут оказывать токсическое действие на человека и животных (особенно хлорид, ацетат и сульфат алюминия).
Физические свойства алюминия
Алюминий — достаточно легкий металл серебристого цвета, который может образовывать сплавы с большинством металлов, особенно с медью, магнием и кремнием. Также он весьма пластичен, его без труда можно превратить в тонкую пластинку или же фольгу. Температура плавления алюминия = 660 °C, а температура кипения — 2470 °C.
Химические свойства алюминия
При комнатной температуре металл покрывается прочной пленкой оксида алюминия Al₂O₃, которая защищает его от коррозии.
С окислителями алюминий практически не реагирует из-за защищающей его оксидной пленки. Однако ее можно легко разрушить, чтобы металл проявил активные восстановительные свойства. Разрушить оксидную пленку алюминия можно раствором или расплавом щелочей, кислотами или же с помощью хлорида ртути.
Благодаря восстановительным свойствам алюминий нашел применение в промышленности — для получения других металлов. Этот процесс называется алюмотермией. Такая особенность алюминия заключается во взаимодействии с оксидами других металлов.
Алюмотермическая реакция с участием оксида железа (III) [Wikimedia]
Например, рассмотрим реакцию с оксидом хрома:
Cr₂O₃ + Al = Al₂O₃ + Cr.
Алюминий хорошо вступает в реакцию с простыми веществами. Например, с галогенами (за исключением фтора) алюминий может образовать иодид, хлорид, или бромид алюминия:
2Al + 3Cl₂ → 2AlCl₃
С другими неметаллами, такими как фтор, сера, азот, углерод и т.д. алюминий может реагировать только при нагревании.
Также серебристый металл вступает в реакцию и со сложными химическими веществами.Например, с щелочами он образует алюминаты, то есть комплексные соединения, которые активно используются в бумажной и текстильной промышленности. Причем в реакцию вступает как гидроксид алюминия
Al(ОН)₃ + NaOH = Na[Al(OH)₄]),
так и металлический алюминий или же оксид алюминия:
2Al + 2NaOH + 6Н₂О = 2Na[Al(OH)₄] + ЗН₂.
Al₂O₃ + 2NaOH + 3H₂O = 2Na[Al(OH)₄]
С агрессивными кислотами (например, с серной и соляной) алюминий реагирует довольно спокойно, без воспламенения.
Если опустить кусочек металла в соляную кислоту, то пойдет медленная реакция — сначала будет растворяться оксидная пленка — но затем она ускорится. Алюминий растворяется в соляной кислоте с выделением водорода. В результате реакции получается хлорид алюминия:
Al₂O₃ + 6HCl = 2AlCl₃ + 3H₂O
2Al + 6HCl → 2AlCl₃ + 3H₂.
Хлорид алюминия [Wikimedia]
Здесь вы найдете интересные опыты на изучение химических свойств металлов.
Реакция алюминия с водой
Если опустить алюминиевую стружку в обычную воду, ничего не произойдет, потому что алюминий защищен оксидной пленкой, которая не дает этому металлу вступить в реакцию.
Только сняв защитную пленку хлоридом ртути, можно получить результат. Для этого металл нужно вымачивать в растворе хлорида ртути на протяжении двух минут, а затем хорошо его промыть. В результате получится амальгама, сплав ртути и алюминия:
3HgCI₂ + 2Al = 2AlCI₃ + 3Hg
Причем она не удерживается на поверхности металла. Теперь, опустив очищенный металл в воду, можно наблюдать медленную реакцию, которая сопровождается выделением водорода и образованием гидроксида алюминия:
2Al + 6H₂O = 2Al(OH)₃ + 3H₂.
Источник: https://melscience.com/ru/articles/alyuminij-i-ego-reakciya-s-vodoj/
Почему в алюминиевой посуде нельзя хранить щелочные растворы
В рекомендациях по приготовлению и хранению различных средств в домашних условиях часто можно встретить фразу, что стоит использовать эмалированную, стеклянную или нержавеющую посуду. При этом отмечают, что алюминиевая – не пригодна. Чтобы разобраться в таком отношении, стоит обратиться к химии и коррозии металлов. Именно они подскажут: почему в алюминиевой посуде нельзя хранить щелочные растворы.
Основные факты про вещество
Элемент, занимающий ячейку №13 Периодической системы химических элементов Д.И. Менделеева, относится к главной подгруппе третьей группы. Это промежуточное положение между металлами и неметаллами. Потому совмещает в себе свойства как первых, так и вторых.Его характерная валентность в соединениях III, а степени окисления: 0 – для простого вещества, и +3 – для соединений.
Это прочный, но мягкий металл, серебристо-белого цвета. Низкая плотность позволяет легко придавать ему любую форму. Отсюда, широкое использование алюминия, в том числе и в бытовых целях. Достаточно вспомнить погнутые вилки и ложки в общественных столовых.
Что же расскажет химия про алюминий?
С точки зрения химии, алюминий это реакционно-активное вещество. Обычно, во всех взаимодействиях он ведет себя как восстановитель, а сам окисляется, то есть легко отдает все свои 3 валентных электрона. Потому в природе в чистом виде не существует. Вся тайна неординарного поведения этого металла заключается в его двойственности или, как ее еще называют в амфотерности.
Состоит она в проявлении кислотных или основных свойств в зависимости от среды, основной или кислой соответственно. Так, алюминий (Al), как простое вещество, реагирует с разбавленными кислотами и выделяет из них молекулы водорода (Н2). С щелочами в растворе, образует красивые комплексные соединения.
С теми же щелочами, но в расплаве образует соли алюминиевой кислоты (H3AlO3) – алюминаты.
Коррозионная стойкость алюминия
Метал алюминий – любимый материал в производстве. Помимо перечисленных выше его достоинств: мягкости и прочности, сюда можно добавить высокую коррозионную прочность в обычных условиях.Коррозией называют разрушение веществ без внешнего механического воздействия. Это понятие привычно для металлов и сплавов, хотя на самом деле применимо, к любому другому материалу тоже.
Чистые металлы или сплавы вступают в реакцию с веществами окружающей среды и окисляются, нарушая целостность изделия. Самым распространенным примером является образование и отслоение ржавчины на железной поверхности. Коррозия алюминиевых деталей выглядит в виде темных точек, царапин и провалов.
Устойчивость алюминия к коррозии обусловлена наличием оксидной пленки (Al2O3) на поверхности. Пленка тонкая и прочная, внешне практически незаметная. Полностью покрывает поверхность металла, тем самым защищая его от негативного воздействия внешних факторов. Образуется Al2O3 легко взаимодействием с кислородом воздуха.
Получается, что в атмосфере алюминий сам себя защищает от коррозионных процессов. Он проявляет стойкость даже в средах с большим содержанием сероводорода, аммиака, хлороводорода и других газов.
Этим обосновано применение алюминия как материла для оборудования в химической промышленности или емкостей для хранения в сельском хозяйстве.
Если говорить о посуде, то в ней происходят процессы разрушения под действием водных растворов. Обессоленная (дистиллированная) вода, как и горячий пар, не будут иметь никакого влияния на алюминиевую поверхность. Коррозию могут вызвать минеральные соли или щелочи в воде, если оксидная пленка потеряет свою целостность (например, поцарапается ложкой) и откроет молекулярный алюминий. В таком случает, он прореагирует с водой, образуя белый гидрооксид (Al(OH)3), и выделит водород (Н2).
Что понимать под щелочными растворами?
Щелочи – это соединения, в состав которых входят металлы главной подгруппы первой группы и ион гидрооксида (ОН-). Они растворимы в воде, где находятся в виде соответствующих ионов. Эти растворы и являются щелочными. Например, натрия гидрооксид (NaOH), калия гидрооксид (КОН) и т.д.Тем не менее, к щелочным растворам можно отнести те, чья среда имеет водородный показать (рН) выше 7. Этот параметр зависит от концентрации ионов водорода (Н+) в растворе, и показывает реакцию среды: кислую, нейтральную или щелочную.
Щелочную среду имеют: раствор пищевой соды (NaHCO3), нашатырный спирт (NH4ОН) и прочие. Высокое значение рН показывают мыльные растворы.
Что происходит с алюминиевой посудой в щелочных растворах?
Под действием щелочей оксидная пленка на поверхности алюминия растворяется. Открытый при этом металл взаимодействует с водой, образуя, как уже указывалось ранее, гидрооксид алюминия. Например, если в емкость из алюминия налить едкий натр (NaOH), то появится голубое окрашивание раствора, обусловленное тетрагидроксоалюминатом натрия (Na[Al(OH)4]). Окрашивание может исчезнуть при добавлении избытка воды или кислоты, например, уксуса. В реакции также выделиться молекулярный водород, который можно наблюдать в виде пузырьков.
Раствор пищевой соды тоже бурно прореагирует с алюминиевой посудой, при этом будет наблюдаться обильная пена. После тару можно промыть водой, и поверхность заблестит, как новенькая.Объяснить это можно тем, что гидрокарбонат натрия (сода) вступит в реакцию с оксидом алюминия, образуя комплексную соль и угольную кислоту (Н2СО3), которая неустойчива и распадается с выделением газа, диоксида углерода (СО2). Подобная реакция наблюдается в кулинарии при гашении соды уксусом.
Таким образом, алюминий прекрасный материал для изготовления тары. Он коррозионно-устойчивый там, где другие металлы и сплавы пасуют. Даже агрессивные среды не способны его разрушить. Но, оказывается, щелочные растворы, даже такие безобидные как смесь пищевой соды с водой, могут разрушающе действовать на изделия из чистого алюминия и его сплавов.
Способы борьбы с коррозией алюминия
Алюминий – широко распространенный в промышленности и быту металл. Окисление алюминия на воздухе не происходит. Его инертность обусловлена тонкой оксидной пленкой, защищающей его. Однако под влиянием определенных факторов из окружающей среды этот метал все же подвергается разрушительным процессам, и коррозия алюминия — не такое уж и редкое явление.
Виды коррозии
Окисляется алюминий в атмосфере быстро, но на небольшую глубину. Этому препятствует защитная окисная пленка. Окисление ускоряется выше температуры плавления алюминия. Если нарушается целостность оксидной пленки, алюминий начинает корродировать. Причинами истончения его защитного слоя могут стать различные факторы, начиная с воздействия кислот, щелочей и заканчивая механическим повреждением.
Коррозия алюминия – саморазрушение металла под воздействием окружающей среды. По механизму протекания выделяют:
- Химическую коррозию – происходит в газовой среде без участия воды.
- Электрохимическую коррозию – протекает во влажных средах.
- Газовое разрушение – но сопровождает нагрев и горячую обработку алюминия. В результате взаимодействия кислорода с металлами возникает плотная окисная пленка. Вот почему алюминий не ржавеет, как и все цветные металлы.
На видео: электрохимическая коррозия металлов и способы защиты.
Причины коррозии алюминия
Коррозионная стойкость алюминия зависит от нескольких факторов:
- чистоты – наличия примесей в металле;
- воздействующей среды – алюминий может одинаково подвергаться разрушению и на чистом сельском воздухе и в промышленно загрязненных районах;
- температуры.
Во многих случаях малоконцентрированные кислоты могут растворить алюминий. От возникновения коррозии не защищает естественная окисная пленка.
Мощные разрушители – фтор, калий, натрий. Алюминий и его сплавы корродируют при воздействии химических соединений брома и хлора, растворов извести и цемента.
Коррозия алюминия и его сплавов происходит в воде, воздухе, оксидах углерода и серы, растворах солей. Морская вода приводит к ускоренному разрушению. Алюминий считается активным металлом, но при этом отличается хорошими коррозионными свойствами.
Выделяют два основных фактора, которые влияют на интенсивность коррозийного процесса:
- степень агрессивности воздействующей окружающей среды – влажность, загрязненность, задымленность;
- химическая структура.
Неорганические соединения
Алюминий не стоек к действию кислот. Исключение составляют концентрированные азотная и серная кислоты — их окислительные свойства настолько сильны, что при контакте с алюминием на его поверхности образуется прочный слой оксида алюминия, препятствующий дальнейшему разрушению металла (поэтому концентрированную азотную или серную кислоту перевозят в алюминиевых цистернах). Разбавленная азотная или серная кислота — более слабый окислитель — энергично реагирует с алюминием.
В кислотах алюминий растворяется тем хуже, чем меньше содержит дополнительных примесей. Следует помнить, что анодное окисление не защищает от воздействия кислот, поскольку они разрушают слой Al2O3. Химическая активность кислот увеличивается с ростом температуры. Например, с возрастанием температуры на 10°С скорость коррозии удваивается. Увеличение концентрации кислоты, как правило, увеличивает скорость коррозии (концентрированные серная и азотная кислоты — исключение).
Соляная кислота вызывает сильную коррозию. Действие этой кислоты нельзя ослабить добавлением ингибиторов.
Фтороводородная кислота оказывает самое сильное влияние на алюминий. Даже непродолжительное взаимодействие разбавленной кислоты ведет к полному растворению алюминия.
Кислородсодержащие кислоты хлора (HClO4, HClO3, HClO) вызывают сильную коррозию алюминия.
Серная кислота вызывает равномерную коррозию алюминия, интенсивность которой зависит от концентрации. Разбавленная кислота средней концентрации при комнатной температуре отличается умеренной агрессивностью. Наиболее агрессивна кислота концентрации 80%. Некоторые вещества, входящие в состав алюминиевых сплавов, а также ионы, содержащиеся в воде (особенно фториды и хлориды), усиливают действие серной кислоты.
Сернистая кислота вызывает локальную коррозию алюминия.
Сера и халькогены (селен и теллур) на алюминий не действуют.
Фосфорная кислота разрушает алюминий умеренно или сильно (в зависимости от концентрации).
Мышьяк при комнатной температуре не действует на алюминий.
Мышьяковая кислота (H3AsO4) и окись мышьяка сильно разрушают алюминий, а мышьяковистая кислота (H3AsO3) без нагревания на него не влияет.
Азотистая кислота (HNO2) при комнатной температуре не действует на алюминий.
Азотная кислота (HNO3) воздействует на алюминий по-разному, в зависимости от концентрации. Разбавленные растворы интенсивно разрушают алюминий. В концентрированных растворах вследствие окислительных процессов поверхность алюминия пассивируется и коррозия замедляется. Наиболее сильную коррозию вызывает кислота концентрацией 10-60%. Действие азотной кислоты приводит к равномерной коррозии. С увеличением чистоты алюминия возрастает его стойкость к коррозии. Наличие в составе слава примесей меди, кремния, магния усиливает воздействие азотной кислоты.
Источник
Основные виды коррозии алюминия
Алюминий и, в разной степени, его сплавы обладают высокой стойкостью к коррозии даже без какого-либо специального защитного покрытия.
Естественное оксидное покрытие
Естественная поверхность алюминия, которая возникает в ходе изготовления алюминиевого изделия, например, прессованием, прокаткой или литьем, имеет высокое сопротивление коррозии в большинстве типов окружающей среды. Это происходит потому, что свежая поверхность алюминия спонтанно и мгновенно образует тонкий, но очень эффективный оксидный слой, который предотвращает дальнейшее окисление металла.
Эта оксидная пленка является непроницаемой и, в отличие от оксидных пленок других металлов, например, железа, очень прочно «прикрепляется» к основному металлу. При каком-либо механическом повреждении эта пленка мгновенно восстанавливается, залечивается.
Естественный оксидный слой и является главной причиной хорошего сопротивления алюминия к коррозии. Это покрытие является стойким в средах с кислотностью – водородным показателем рН – от 4 до 9.
Три главных вида коррозии алюминия
Наиболее частыми видами коррозии алюминия являются:
- гальваническая (контактная) коррозия;
- язвенная (точечная) коррозия;
- щелевая коррозия.
Коррозия под напряжением, которая ведет к образованию трещин, является более специфическим видом коррозии. Она случается в основном в высокопрочных алюминиевых сплавах, например, сплавах AlZnMg, когда они подвергаются длительным растягивающим напряжениям в присутствии коррозионной среды. Этот тип коррозии обычно не происходит в сплавах серии 6ххх, то есть сплавах AlMgSi.
Гальваническая коррозия алюминия
Гальваническая коррозия может случаться тогда, когда два различных металла находятся в непосредственном контакте и между ними образовался электролитический мост. Менее благородный металл в этой комбинации становится анодом и корродирует. Более благородный металл становиться катодом и находится под защитой от коррозии.
В большинстве комбинаций с другими металлами алюминий является менее благородным металлом. Поэтому алюминий подвержен более высокому риску гальванической коррозии, чем другие строительные материалы. Однако, этот риск меньше, чем это обычно считается.
Необходимые условия: контакт и влага
Гальваническая коррозия алюминия происходит только тогда, когда одновременно:
- есть контакт с более благородным металлом (или другим электрическим проводником с более высоким химическим потенциалом, чем у алюминия, например, графитом;
- между двумя металлами находится электролит с хорошей проводимостью, чаще всего, вода с растворенными солями.
Гальваническая коррозия не происходит в сухой воздушной атмосфере, например, внутри нормального жилого помещения. Нет большого риска гальванической коррозии и чистой сельской атмосфере. Вместе с тем, риск гальванической коррозии необходимо всегда принимать в расчет в атмосферах с высоким содержанием хлоридов, например, в районах вблизи морей и океанов.
Алюминий и оцинкованная сталь
Могут быть проблемы с гальванической коррозией и в паре алюминия с оцинкованной сталью. Цинковое покрытие оцинкованной стали будет сначала защищать алюминий от коррозии.
Однако, эта защита снижается, когда поверхность стали начинает обнажаться по мере расходования цинка. Горячее цинкование стали дает большую толщину цинкового покрытия, чем электрохимическое цинкование и обеспечивает более длительную защиту алюминия.
Поэтому в агрессивной атмосфере в контакте с алюминием применяют только оцинкованную сталь горячего цинкования.
Электрическая изоляция
Там, где различные металлы применяются в контакте, гальванической коррозии можно избежать путем электрической изоляции одного металла от другого. Пример такого решения для болтового соединения между алюминиевым и стальным листом приведен на рисунке 1.
Между головкой болта и поверхностью алюминия может возникнуть электролит, но электроизолирующая шайба не даст возможности протекать гальваническому электрическому току и коррозии не произойдет.
С другой стороны в контакте алюминиевого и стального листа отсутствует возможность попадания влаги, электролит не образуется и коррозия не происходит.
Механическое покрытие
Как защитить алюминий от коррозии? Чаще всего применяют механический способ – нанесение слоя краски.
Покройте краской изделие и вы убедитесь в действенности этого способа. Окрашивание бывает мокрым и сухим, или порошковым. Эти технологии усовершенствуются. При мокром окрашивании лакокрасочные слои наносят после защиты алюминия составом, содержащим соединения цинка и стронция. Металлическую основу тщательно подготавливают: защищают, шлифуют, сушат. Грунт наносят поэтапно.
Когда растворитель из грунтовочной смеси полностью исчезнет, поверхность можно покрывать изолирующим составом: масляным или глифталиевым лаком.
Специальные составы помогают остановить коррозию и защищают алюминиевые конструкции от химикатов, бензина, различного вида масел. Выбор покрытия зависит от условий последующей эксплуатации металлического изделия:
- молотковые – применяют для получения конструкций различных цветовых оттенков, используемых в декоре;
- бакелитовые – наносят под высоким давлением, заполняя микротрещины и поры.
Порошковое окрашивание требует тщательной очистки поверхности от жира и различных отложений. Это достигается погружением в щелочные или кислотные растворы с добавлением смачивателей. Далее на алюминиевые конструкции наносится слой хроматных, фосфатных, циркониевых или титановых соединений. После этого он не будет окисляться.
После просушки материала на окислившийся участок наносят защитный полимер. Чаще всего используются полиэфиры, стойкие к механическому, химическому и термическому воздействию. Применяют полимеризованный уретан, эпоксидные и акриловые порошки.
Коррозия алюминия и методы его защиты
Алюминий и его сплавы отличаются отличной устойчивостью к разрушениям различного характера. Однако, несмотря на это — коррозия алюминия представляет собой не такое уж и редкое явление. Различные формы коррозии представляют собой основную причину порчи этих материалов. Для борьбы с разрушительными процессами необходимо обязательно понимать факторы, которые являются причиной их появления.
Коррозия алюминия представляет собой реакцию, которая имеет место между металлом и окружающей средой. Этот процесс может иметь как естественное, так и химическое происхождение. Самой распространенной формой разрушения металла можно назвать появление на его поверхности процессов ржавления.
Особенностью всех видов металлов можно назвать их свойство вступать в реакцию с водой и окружающей средой. Отличием для каждого вида металла считается только интенсивность данного процесса. К примеру, у благородных металлов типа золота скорость такой реакции не будет слишком быстрой, а вот железо, в том числе и алюминий, будут реагировать на воздействия такого характера достаточно быстро.
Можно выделить два фактора, которые оказывают непосредственное влияние на интенсивность протекания процесса коррозии. Одним из них можно назвать степень агрессивности окружающей среды, а вторым металлургическую или химическую структуру. Атмосфере, которая нас окружает, всегда характерен определенный уровень влажности. Кроме того, ей характерен определенный уровень загрязнений и отходов.
Если учесть, что свойства атмосферы часто определяются регионом и степенью индустриализации, на сегодняшний день можно выделить:
- сельская местность (малая степень загрязнений и средний уровень влажности);
- приморские области (средняя степень загрязнений и высокий уровень влажности);
- городская местность (средний уровень влажности и средний уровень продуктов распадов жидкого топлива, серы и окислов углерода);
- промышленные и индустриальные зоны (большое количество серы, окислов углеродов и кислот, а также средний уровень влажности)
Для большинства случаев, кислоты неорганического типа, даже при низкой концентрации смогут растворить алюминий. И даже натуральная пленка оксида алюминия не сможет стать достаточной защитой от возникновения коррозийных процессов.
Самыми мощными растворителями можно назвать фтор, калий и натрий. Кроме того, алюминию характерна довольно низкая сопротивляемость к соединениям хлора и брома. Весьма агрессивны к различным сплавам алюминиевых металлов, являются известковые и цементные растворы.
Можно выделить несколько разновидностей проявления коррозии алюминия и его сплавов:
- Поверхностная. Данный тип разрушения встречается чаще всего и является наименее вредоносным. Его легче всего заметить на поверхности. Это дает возможность своевременно использовать предохранительные средства. Поверхностные разрушения очень часто встречаются на анодированных профилях для строительства.
- Локальная. Такие разрушения проявляются в виде форм, углублений и пятен. Такой тип коррозии бывает поверхностного и междукристаллического типа. Разрушения такого характера являются особенно опасными, по причине того, что их достаточно сложно обнаружить. Такая коррозия очень часто разрушает именно труднодоступные части конструкций и узлов.
- Нитеподобная или филигранная. Этот вид разрушения алюминия часто появляется под покрытиями органического типа, а также на граничных поверхностях обработки. Нитеподобная коррозия появляется в ослабленных местах повреждения органического покрытия или краях отверстий;
Довольно часто, естественных антикоррозийных способностей алюминия и его сплавов для защиты от разрушений бывает недостаточно. А длительный период эксплуатации изделий из этих металлов, в обязательном порядке потребует использования дополнительных методов защиты. К самым частым методам протекции металлов от коррозии можно отнести:
- анодирование окисление (исследования немецких специалистов показывают, что данный вид защиты используется на 15% от общего количества производства строительных профилей в мире);
- покрытие поверхности металлов порошковыми составами;
- защита от контакта с другими металлами
Анодирование
Анодированное покрытие представляет собой покрытие, которое создает на поверхности алюминия прочную пленку из оксида алюминия, которая не поддается воздействию агрессивных сред. Такая обработка позволяет создать на поверхности металла такой слой пленки, который просто не оставляет алюминию возможности контактировать с внешней средой и ограждает его от процессов окисления.
Вредна ли алюминиевая посуда и в чем ее вред
В средневековье вельможи ели из алюминиевой посуды и преподносили друг другу дары в виде столовых приборов из этого лёгкого металла. Спустя время этот элемент периодической таблицы научились добывать в достаточных количествах и его себестоимость постепенно снизилась. Так как предметы кухонной утвари из алюминия остались на полках магазинов, ученные захотели выяснить, вредна ли алюминиевая посуда для человеческого организма.
Что такое алюминий
Алюминий – это лёгкий металл, который отлично поддаётся литью и механической обработке. Он податлив, хорошо проводит тепло и не покрывается ржавчиной, так как на поверхности алюминиевого изделия образуется оксидная плёнка.
В былые времена алюминий являлся очень ценным металлом. Надеть на себя украшения из этого лёгкого серебристо-белого металла могли позволить только богатые люди. Сейчас же он используется в пищевой промышленности для производства посуды и фольги для запекания. Он издавна популярен в авиапромышленности, строительстве, теплотехнике, так как лёгкий и не поддаётся окислению.
Вред алюминия для человека
Вокруг алюминия в последнее время витает много противоречивой информации. Одни твердят, что, накапливаясь в организме, он разрушает нервную систему, другие, что он вызывает болезнь Альцгеймера. Однако имеет ли это отношение к алюминиевой посуде?
Алюминий и вправду токсичен для человека в больших количествах. Опасным для здоровья считается попадание в организм более 50 мг этого металла за сутки. Чем же так не угодила посуда? СМИ распространили информацию, что этот серебристо-белый металл:
- уничтожает нервные клетки;
- приводит к болезни Альцгеймера;
- разрушает мозг и ухудшает его деятельность;
- способствует росту новообразований;
- приводит к дисфункции почек;
- ухудшает обмен витаминов и минералов;
- тормозит выработку гемоглобина.
В 70-х годах прошлого столетия в Канаде проводились опыты, нацеленные обнаружить причину возникновения болезни Альцгеймера. Исследователи начали бить тревогу, так как у всех больных этим недугом выявили повышенное содержание алюминия в сравнении со здоровым человеком.
Однако учёные так и не смогли установить связь между этим фактом и этиологией возникновения этого тяжёлого заболевания. Природа сенильной деменции этого типа так и не выявлена по сей день, но одно известно наверняка – алюминиевая посуда никак не способствует проявлению этого заболевания.
Это и ещё многое другое приписывают этому природному металлу. Нельзя сказать, что эти обвинения беспочвенны – избыток любого вещества в организме приводит к сбоям. Но, позвольте заметить, что посуда тут совсем ни при чём.
Можно ли использовать алюминиевую посуду
Наши бабушки и дедушки не имели возможности принимать пищу из красивой посуды из нержавеющей стали с позолотой. Даже мельхиоровые столовые приборы были на вес золота. Тем не менее старшее поколение, которое пользовалось алюминиевой посудой, в большинстве своём здоровее и крепче нынешней молодёжи.
Дело в том, что даже если приготовить пищу в алюминиевой кастрюле, переложить её в алюминиевую миску, поесть из неё алюминиевой ложкой, а потом запить всё это из алюминиевой кружки, в организм не поступит более чем 2 г алюминия. Это вполне нормальный показатель – такое количество этого вещества никак не повлияет на жизнедеятельность и здоровье человека.
Кроме того, малые дозы алюминия нужны человеку для восстановления костной ткани, регенерации эпителия, регуляции выделения пищевых ферментов. Он содержится в водопроводной воде, так как она проходит очистку сульфатом алюминия, в сухих антиперспирантах и даже в лекарственных препаратах, например, в Аспирине. К тому же имея здоровые почки, можно не опасаться высокой концентрации алюминия в организме – он быстро выводится мочевыделительной системой.
Правда о посуде из алюминия
Теперь стоило бы упомянуть о правдивой информации, связанной с посудой из лёгкого серебристо-белого металла. Используя алюминиевые кастрюли, сковороды и столовые приборы, помните:
- Посуда из алюминия вступает в реакцию с кислотами. Например, если вы наливаете в ложку уксус или лимонный сок, то выделится небольшое количество металла, который впоследствии попадёт в пищу. На самом деле, даже при самой активной реакции, более чем 3 г из посуды вытравить невозможно, поэтому вреда здоровью это не принесёт.
- Приготовленную пищу лучше не хранить в алюминиевой посуде. Это правда, так как вкусовые качества блюд могут измениться, к тому же алюминий периодически будет выделяться и вступать в реакцию с приготовленной едой. Опять же, вреда от этого не будет, но вкус пищи может измениться.
- Не нужно усердно тереть алюминиевые кастрюли и сковороды металлической губкой. Во-первых, поцарапается поверхность и внешний вид предмета кухонной утвари испортится, а во-вторых, сотрётся защитный слой, предупреждающий появление ржавчины.
Предложения современных производителей
Если есть опасения по поводу того, что алюминиевая посуда вступает в реакцию с пищей, то полезным будет узнать, что современные производители решили проблему окисления и вышли из положения двумя способами:
- защита от окисления с помощью специальной обработки, вследствие которой получают анодированный алюминий;
- заключение алюминия в нержавеющую сталь. Такая многослойная посуда более лёгкая и не менее долговечная, чем из других дорогостоящих сплавов.
Таким образом, можно приобрести красивую и абсолютно безвредную посуду по хорошей цене. Единственный момент – лучше отдавать предпочтение литым изделиям. Штампованные прослужат меньше.
Достоинства и недостатки алюминиевой посуды
Итак, то, что алюминиевая посуда не может нанести вред человеческому здоровью – это факт. Чем же она так хороша, а какие её характеристики оставляют желать лучшего?
- Она очень лёгкая. Это ценное свойство, особенно если нужно взять с собой столовые приборы и кружку в поездку или алюминиевый котелок в поход. Она настолько легковесна, что почти не утяжеляет ношу.
- Она быстро нагревается. За счёт того, что посуда из алюминия очень тонкая, вода в неё закипает гораздо быстрее, чем в новомодных кастрюлях с толстым семислойным дном.
- Она не покрывается ржавчиной. Купив набор такой посуды не нужно гадать, окислится она или нет. Дело в том, что при первом контакте с кислородом на поверхности этого лёгкого металла образуется оксидная плёнка, которая защищает его от ржавчины. Это большой плюс, так как при покупке дешёвой многослойной посуды из нержавеющей стали можно напороться на китайскую подделку, которая со временем покроется ржавчиной. За эти деньги лучше приобрести алюминиевый набор.
Теперь нужно упомянуть и о недостатках кухонной утвари из серебристо-белого металла. Среди них:
- такая посуда очень хрупка и легко поддаётся деформации;
- при длительном использовании она истирается, особенно это касается днища кастрюль и сотейников. После этого пища начинает неравномерно нагреваться и может пригорать;
- она темнеет и весьма недолговечна, со временем такая утварь может настолько поизноситься, что стирается до дыр.
Коррозия алюминия
Коррозия алюминия – разрушение металла под влиянием окружающей среды.
Для реакции Al3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.
Температура плавления алюминия — 660 °C.
Плотность алюминия — 2,6989 г/см3 (при нормальных условиях).
Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.
Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!
Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.
Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.
При нагревании алюминий может реагировать с некоторыми неметаллами:
2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;
4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;
2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.
Коррозия алюминия на воздухе (атмосферная коррозия алюминия)
Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо Al2O3•H2O.
Реакция взаимодействия алюминия с кислородом:
4Al + 3O2 → 2Al2O3.
Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.
Алюминий достаточно стоек как на чистом сельском воздухе, так и находясь в промышленной атмосфере (содержащей пары серы, сероводород, газообразный аммиак, сухой хлороводород и т.п.). Т.к. на коррозию алюминия в газовых средах не оказывают никакого влияния сернистые соединения – его применяют для изготовления установок переработки сернистой нефти, аппаратов вулканизации каучука.
Коррозия алюминия в воде
Коррозия алюминия почти не наблюдается при взаимодействии с чистой пресной, дистиллированной водой. Повышение температуры до 180 °С особого воздействия не оказывает. Горячий водяной пар на коррозию алюминия влияния также не оказывает. Если в воду, даже при комнатной температуре, добавить немного щелочи – скорость коррозии алюминия в такой среде немного увеличится.
Взаимодействие чистого алюминия (не покрытого оксидной пленкой) с водой можно описать при помощи уравнения реакции:
2Al + 6H2O = 2Al(OH)3 + 3H2↑.
При взаимодействии с морской водой чистый алюминий начинает корродировать, т.к. чувствителен к растворенным солям. Для эксплуатации алюминия в морской воде в его состав вводят небольшое количество магния и кремния. Коррозионная стойкость алюминия и его сплавов, при воздействии морской воды, значительно снижается, если в состав метала будет входить медь.
Коррозия алюминия в кислотах
С повышением чистоты алюминия его стойкость в кислотах увеличивается.
Коррозия алюминия в серной кислоте
Для алюминия и его сплавов очень опасна серная кислота (обладает окислительными свойствами) средних концентраций. Реакция с разбавленной серной кислотой описывается уравнением:
2Al + 3H2SO4(разб) → Al2(SO4)3 + 3H2↑.
Концентрированная холодная серная кислота не оказывает никакого влияния. А при нагревании алюминий корродирует:
2Al + 6H2SO4(конц) → Al2(SO4)3 + 3SO2↑ + 6H2O.
При этом образуется растворимая соль – сульфат алюминия.
Al стоек в олеуме (дымящая серная кислота) при температурах до 200 °С. Благодаря этому его используют для производства хлорсульфоновой кислоты (HSO3Cl) и олеума.
Коррозия алюминия в соляной кислоте
В соляной кислоте алюминий или его сплавы быстро растворяются (особенно при повышении температуры). Уравнение коррозии:
2Al + 6HCl → 2AlCl3 + 3H2↑.
Аналогично действуют растворы бромистоводородной (HBr), плавиковой (HF) кислот.
Коррозия алюминия в азотной кислоте
Концентрированный раствор азотной кислоты отличается высокими окислительными свойствами. Алюминий в азотной кислоте при нормальной температуре исключительно стоек (стойкость выше, чем у нержавеющей стали 12Х18Н9). Его даже используют для производства концентрированной азотной кислоты методом прямого синтеза
При нагревании коррозия алюминия в азотной кислоте проходит по реакции:
Al + 6HNO3(конц) → Al(NO3)3 + 3NO2↑ + 3H2O.
Коррозия алюминия в уксусной кислоте
Алюминий обладает достаточно высокой стойкостью к воздействию уксусной кислоты любых концентраций, но только если температура не превышает 65 °С. Его используют для производства формальдегида и уксусной к-ты. При более высоких температурах алюминий растворяется (исключение составляют концентрации кислоты 98 – 99,8%).
В бромовой, слабых растворах хромовой (до10%), фосфорной (до 1%) кислотах при комнатной температуре алюминий устойчив.
Слабое влияние на алюминий и его сплавы оказывают лимонная, масляная, яблочная, винная, пропионовая кислоты, вино, фруктовые соки.
Щавелевая, муравьиная, хлорорганические кислоты разрушают металл.
На коррозионную стойкость алюминия очень сильно влияет парообразная и капельножидкая ртуть. После недолгого контакта металл и его сплавы интенсивно корродируют, образуя амальгамы.
Свойства
Давайте изучим характеристики алюминия. Описываемый металл плавится при температуре 659 градусов Цельсия. Плотность вещества составляет 2,69*103 кг/см3. Алюминий относят в группу активных металлов. Устойчивость к коррозионным процессам зависит от ряда факторов:
- Чистота сплава. Для производства различного оборудования берут металл, отличающейся своей чистотой. В нем не должно быть различных примесей. Широко распространен алюминий марки АИ1, а также АВ2.
- Среда, в которой находится алюминий.
- Какая концентрация примесей в окружающей алюминий среде.
- Температура.
- Большое влияние оказывает рН среды. Нужно знать, что оксид алюминия может образовываться, когда рН находится в интервале между 3 и 9. В той среде, где на поверхности листа алюминия сразу же появляется оксидная пленка, коррозионные процессы развиваться не будут.