Коэффициенты теплопроводности различных материалов, таблица


Шаг 4: Сравниваем. Таблица теплопроводности утеплителей

В таблице приводится сравнение утеплителей по теплопроводности заявленной производителями и соответствующие ГОСТам:

Наименование материалаКоэффициент теплопроводности Ват/м2
Пенопласт0.03
Минвата0,049-0,6
Пенофол0,037-0,049
Пеноизол0,21-0,24
Пеностекло0.08
Пенополиуретан (ППУ)0.02
Эковата (целюлоза)0.04

Сравнительная таблица теплопроводности строительных материалов, которые не принято считать утеплителями:

Наименование материалаКоэффициент теплопроводности Ват/м2
Бетон1.51
Гранит3.49
Мрамор2.91
Сталь58

Показатель теплопередачи лишь указывает на скорость передачи тепла от одной молекуле к другой. Для реальной жизни этот показатель не так важен. А вот без теплового расчета стены не обойтись. Сопротивление теплопередаче — величина обратная теплопроводности. Речь идет о способности материала (утеплителя) задерживать тепловой поток. Чтобы рассчитать сопротивление теплопередаче нужно разделить толщину на коэффициент теплопроводности. На примере ниже показан расчет теплового сопротивления стены из бруса толщиной 180 мм.

Как видно, теплосопротивление такой стены составит 1,5. Достаточно? Это зависит от региона. В примере показан расчет для Красноярска. Для этого региона нужный коэффициент сопротивления ограждающих конструкций установлен на уровне 3,62. Ответ ясен. Даже для Киева, который намного южнее данный показатель равняется 2,04.

А значит, способности деревянного дома сопротивляться потере тепла недостаточно. Необходимо утепление, а уже, каким материалом — рассчитывайте по формуле.

Снижение теплопотерь

Как видно из диаграммы, в доме достаточно мест, через которые происходит утечка тепла. Чтобы снизить потери, нужно рассчитать сопротивление теплопередаче R и сравнить с нормативами:

Здания и помещенияГрадусо-сутки отопительного периода, °С·сут/годБазовые значения требуемого сопротивления теплопередаче R0, (м²·°С)/Вт, ограждающих конструкций
СтенПокрытий и перекрытий над проездамиПерекрытий чердачных над неотаплива-емыми подпольями и подваламиОкон и балконных дверей, витрин и витражейЗенитных фонарей
Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития20002,13,22,80,30,3
40002,84,23,70,450,35
60003,55,24,60,60,4
80004,26,25,50,70,45
100004,97,26,40,750,5
120005,68,27,30,80,55

Формула выглядит так:

Пример: возьмем стену из елового бруса толщиной 15 сантиметров (0,15 м) в условиях эксплуатации «А». Коэффициент теплопередачи древесины λ вдоль волокон будет равен 0,29 Вт/(м·°С), тогда получим:

Оказалось, что наша стена обеспечивает в 4 раза меньший показатель, чем нужно по нормативу 2,1 (м²·°С)/Вт. Чтобы подобрать необходимую толщину, преобразуем формулу к виду:

Пример: Толщина слоя = 2,1 (м²·°С)/Вт × 0,29 Вт/(м·°С) = 0,609 м. То есть, чтобы добиться минимальных условий сохранения тепловой энергии, нам нужно построить стены из елового бруса толщиной примерно 60 см. Только применение утеплителей снизит расход древесины.

Мы привели в статье полную таблицу коэффициентов теплопроводности. Показали, как рассчитывать необходимую толщину слоя строительных и отделочных материалов в соответствии с нормативами. Читателям останется лишь применить полученные знания на практике.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл, а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:

\tau\frac{\partial\mathbf{q}}{\partial t}=-\left(\mathbf{q}+\varkappa\,\nabla T\right).

Если время релаксации \tau пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности строительных материалов в таблицах

Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.

Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.

Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Перлитовая

Это одна из разновидностей декоративных штукатурок, которая состоит из вулканических пород. В состав штукатурки входят особые кислые стекла, которые придают покрытию эстетичный внешний вид и добавляют различные практичные качества. Уникальная способность, которой обладает материал, – вспенивание и увеличение в размерах при нагревании. Надо сказать, что перлитовая штукатурка способна увеличиться в объеме в 10 раз. Благодаря этому получается внешне плотный, но достаточно легкий слой для основной поверхности. Плотность слоя может колебаться в пределах 350…800 кг/м 3 , за счет чего колеблется и теплопроводность штукатурки – 0,13…0,9.

Есть такое понятие «сухая штукатурка». Для незнающих в строительной терминологии это означает обыкновенный гипсокартон. По сути, листы состоят из тех же элементов, что и обычная гипсовая штукатурка (жидкая), за исключением того, что они высушены, спрессованы, сформованы и укреплены на картонных листах. Теплопроводность сухой штукатурки также будет зависеть от плотности материала. Средний коэффициент теплопроводности равен 0.21.

Известковая

Наиболее распространенный вид штукатурки для внутренних работ. Одним из главных ее качеств можно назвать чистую белизну, что отлично подходит под дальнейшие финишные работы, в особенности окрашивание или нанесение декоративных жидких обоев. Состоит смесь из гашеной извести, речного песка. Пропорции могут быть разными. Теплопроводность при плотности 1500 кг/м 3 будет равна 0.7.

Для каждой из смесей предусмотрены свои показатели, которые обозначаются на упаковке. Надо сказать, что бумажный мешок сухой смеси – инструкция не только по эксплуатации, но и составу. Там можно найти основные свойства каждого из составов.

Декоративная

Это исключительно отделочный материал для финишных работ. В его состав могут входить полимерные и синтетические смолы, различные примеси, дающие ей необходимые эстетические свойства. Декоративная штукатурка может применяться для отделки фасадов и внутренних частей здания. Фасадный состав с полимерными добавками при плотности в 1800 кг/м3 имеет коэффициент теплопроводности 1.

Теплопроводность гипсовой штукатурки

Паропроницаемость гипсовой штукатурки нанесенной на поверхность зависит от замешивания. Но если сравнить ее с обычной, то проницаемость гипсовой штукатурки составляет 0,23 Вт/м×°С, а цементной достигает 0,6÷0,9 Вт/м×°С. Такие расчеты позволяю говорить о том что паропроницаемость гипсовой штукатурки намного ниже.

Благодаря низкой проницаемости снижется коэффициент теплопроводности гипсовой штукатурки, что позволяет увеличить тепло в помещении. Гипсовая штукатурка отлично удерживает тепло в отличии от :

  • известково-песчаной;
  • бетонной штукатурки.

Благодаря низкой теплопроводности гипсовой штукатурки стены остаются теплыми даже в сильный мороз снаружи помещения.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, /(·)
Графен4840±440 — 5300±480
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь[какая?
]
47
Свинец35,3
Кварц8
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1-1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038-0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029-0,032
Стекловата0,032-0,041
Каменная вата0,034-0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273-320 K, 100 кПа)0,017
Аргон (240-273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Если задумано индивидуальное строительство

При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Номер п/пМатериал для стен, строительный растворКоэффициент теплопроводности по СНиП
1.Кирпич0,35 – 0,87
2.Саманные блоки0,1 – 0,44
3.Бетон1,51 – 1,86
4.Пенобетон и газобетон на основе цемента0,11 – 0,43
5.Пенобетон и газобетон на основе извести0,13 – 0,55
6.Ячеистый бетон0,08 – 0,26
7.Керамические блоки0,14 – 0,18
8.Строительный раствор цементно-песчаный0,58 – 0,93
9.Строительный раствор с добавлением извести0,47 – 0,81

Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.. Это связано с несколькими причинами:

Это связано с несколькими причинами:

  • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
  • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
  • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность

– это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность

– это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

От чего зависит проводимость тепла

Теплопроводность напрямую зависит от следующих факторов:

  • Плотность. Чем ближе молекулы вещества находятся друг к другу, тем быстрее идет обмен энергией. Значит, повышение плотности ведет к снижению теплозащиты.
  • Структура. В пористых материалах содержатся капсулы с воздухом, который существенно затормаживает процесс улетучивания тепла. Пористый — значит более теплый.
  • Влажность. У воды показатель λ при температуре +20°C в 23 раза больше, чем у воздуха. Поэтому промокший кирпич остывает быстрее.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

\vec{q}=-\varkappa\,\mathrm{grad}(T),

где \vec{q} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, \varkappa — коэффициент теплопроводности

(удельная теплопроводность), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно какзакон теплопроводности Фурье

.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=-\varkappa\frac{S\Delta T}{l},

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, \Delta T — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности \varkappa с удельной электрической проводимостью \sigma в металлах устанавливает закон Видемана — Франца:

\frac{\varkappa}{\sigma}=\frac{\pi^2}{3}\left(\frac{k}{e}\right)^2T,

где k — постоянная Больцмана, e — заряд электрона.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

\varkappa \sim \frac{1}{3} \rho c_v \lambda \bar{v}

где \rho — плотность газа, c_v — удельная теплоёмкость при постоянном объёме, \lambda — средняя длина свободного пробега молекул газа, \bar{v} — средняя тепловая скорость. Эта же формула может быть записана как

\varkappa = \frac{ik}{3\pi^{3/2}d^{2}} \sqrt{\frac{RT}{\mu}}

где i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, \mu — молярная масса, T — абсолютная температура, d — эффективный (газокинетический) диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом

. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): \varkappa \sim \frac{1}{3}\rho c_v l \bar v\propto P, где l — размер сосуда, P — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Экономичная штукатурная теплоизоляция.

Полимерные штукатурки можно только купить, их не изготовить самостоятельно. Но растворы на минеральных вяжущих экономичнее смешивать своими руками.

Заказать работу наемным рабочим дорого. Но, если смесь изготовить самостоятельно, общая цена несколько упадет. Многие застройщики экономят таким образом: нанимают штукатуров, а сами выполняют для них «черную» работу. С учетом того, что помощь подсобника оплачивается не за м2, а по дням, экономия может быть не значительной. Приблизительно 800-1200 руб/день.

Еще дешевле самостоятельная подготовка стены, выставление маяков и грубое оштукатуривание. «Спецам» останется только выровнять покрытие и нанести декоративный раствор.

Теплоизоляционная дешевая штукатурка для наружных работ.

Изолирующие смеси дороже обычных, поскольку сложнее. Своими руками, к тому же, можно сделать далеко не все.
Однако изготовление раствора на основе цемента под силам любому начинающему строителю и способно ощутимо снизить расход средств. В качестве наполнителя можно использовать как влагостойкие насыпные материалы (вспененное стекло, керамзитовые пески), так и не влагостойкое (опилки, перлит, вермикулит). Последние лишь защищают слоем плотного бетона.

Для внешней теплоизоляционной штукатурки возможно применение полистирольных наполнителей. Самый экономичный наполнитель – измельченный пенополистирол. Его стоимость нулевая, он бесплатен. Если использовать для измельчения пенопластовую упаковку.

Такой бетон широко применяется в России и за ее пределами. Он не плотен и не применим в конструкциях, требующих высокой прочности. Но для внешних утепляющих штукатурок вполне подходит.

Теплоизоляционная штукатурка своими руками для внутренних работ.

За квадратный метр отделки без наполнителя застройщики отдают меньше, чем за смесь с наполнителем. Поэтому некоторые, особенно «предприимчивые» строители, пытаются добавлять утепляющие подсыпки в готовые смеси. Это запрещено: такие манипуляции сильно ослабляют раствор, снижают его прочность и долговечность.

Чтобы снизить стоимость за кв. м. проще сделать замес самому, используя недорогие наполнители и вяжущее. Так глиняно-опилочный раствор практически бесплатен, хотя и не уступает по прочности гипсовому. data-matched-content-ui-type=»image_stacked» data-matched-content-rows-num=»2″ data-matched-content-columns-num=»3″ data-ad-format=»autorelaxed»>

Основные характеристки листов гипсокартона всех типов

Каждый строитель знает, что гипсокартон является одним из наиболее удобных и универсальных материалов для отделки стен и возведения перекрытий. Современный рынок предлагает большой спектр типов гкл с различными техническими характеристиками в зависимости от целевого назначения и особенностей эксплуатации. Как правильно подобрать материал и не растеряться среди многообразия фирм-производителей подскажет следующая статья.

1 — ГКЛ, 2 — ГКЛО, 3 — ГКЛВ, 4 — ГКЛВО

Классы ГКЛ и особенности их применения

Гипсокартон представляет собой многослойную плиту из гипса и бумаги. Такая конструкция позволяет использовать материал не только в качестве отделочного, но и создавать полноценные межкомнатные перегородки. При соблюдении определенных правил на них можно вешать полочки, а также клеить обои, класть плитку, да и просто красить. Но обязательно стоит учитывать особенности помещения и правильно подбирать тип гкл.

Итак, листы бывают нескольких видов:

  • стандартные (гкл),
  • влагостойкие (гклв),
  • огнестойкие (гкло),
  • огне- и влагостойкие (гклво).

Кроме того, некоторые производители (например, Knauf) предлагают потребителю так называемый суперлист. Он отличается от стандартного волокнистой структурой, что улучшает свойства гипсокартона, повышает его прочность и облегчает процесс нарезки. Использовать суперлист удобно для возведения межкомнатных перегородок.

Существуют и другие варианты: арочный, акустический и виниловый гкл. Арочный гипсокартон имеет меньшие вес и толщину, что позволяет создавать сложные, изогнутые конструкции. Виниловый удобен тем, что его поверхность готова к декоративной отделке и не нуждается в шпаклевке.

Структура, характеристики и состав гипсокартона

Название «гипсокартон» говорит само за себя: между слоями картона находится «начинка» из гипса. На первый взгляд простой состав обуславливает многочисленные положительные характеристики данного материала:

  • безопасность,
  • экологичность,
  • гладкость поверхности,
  • механическую прочность,
  • легкость в обработке,
  • невысокую цену,
  • огнестойкость,
  • высокие шумоизоляционные характеристики,
  • относительно небольшой вес листа гипсокартона.

В таблице 1 приведены характеристики листа гкл стандартного состава.

Таблица 1. Технические характеристики листа гипсокартона толщиной 12.5 и шириной 1200 мм

Кроме того, существуют определенные отличия в составе гкл разных типов. Утепленный лист с одной стороны имеет слой пенополистирола, который непосредственно влияет на теплопроводность гипсокартонной конструкции. Такой материал вообще не имеет картонного покрытия, что делает его стойким к воздействию влаги и открытого огня. Прекрасно «противостоит» пламени и огнестойкий гкл благодаря армирующим включениям из стекловолокна. Влагостойкий гипсокартон содержит специальные добавки против плесени, а также силикон. Листы обычно выполняют в отличной от других цветовой гамме – розовом или зеленом цвете.

Обзор производителей

Любой опытный строитель посоветует приобретать материалы для ремонта только у известных и проверенных фирм. Среди представленных на отечественном рынке производителей гипсокартона наибольшим доверием потребителей пользуются «Knauf» и «Gyprok». Габаритные размеры, вес листов гкл приведены в таблице 2.

Таблица 2. Характеристики гипсокартона

Из таблицы видно, сколько весит лист гкл самых распространенных типов. У других изготовителей показатели могут отличаться от приведенных, поэтому их стоит обязательно уточнять.

Безопасность и экологичность материала

Поскольку в состав стандартного гкл входят только два компонента (гипс и картон), то никакой опасности для здоровья качественный материал представлять не может. Но недобросовестный производитель вполне может использовать в процессе производства минеральный материал из экологически неблагополучных районов. Поэтому при покупке стоит обязательно проверять сертификаты качества и соответствие ГОСТам.

В каких случаях вредность гипсокартона действительно имеет место? Такие ситуации возникают когда:

  1. Производитель использует добавки, содержащие фенол или формальдегид. Такое встречается у материалов китайского производства.
  2. Не соблюдаются меры предосторожности при нарезке и обработке кромок. Подобные работы всегда сопровождаются повышенным пылевыделением, поэтому лучше всего их проводить в респираторе.
  3. Помещения с повышенной влажностью, оконные проемы и откосы отделывают стандартным гкл в целях экономии. Материал не только разрушается, но и способствует образованию и развитию плесневого грибка, опасного для здоровья человека.
  4. Используют несоответствующую шпаклевку для заделки швов.

Видно, что при соблюдении нехитрых правил гкл является полностью безопасным вариантом отделки, как для человека, так и для окружающей среды. Главное – не экономить на качестве и соблюдать технологию обработки и установки плит.

Технологии монтажа

Технология установки листов гипсокартона на стены и потолок несколько отличается. В качестве примера можно привести способ обшивки стен с помощью металлического каркаса. Такой способ очень надежен и позволяет декорировать поверхность керамической плиткой. Так как плитка имеет немалый вес, чтобы его выдержать, гипсокартон нужно устанавливать на каркас.

Основные этапы отделки:

  1. Расчет расхода материала, с учетом веса и размеров одного листа гипсокартона.
  2. Составление сметы и закупка «расходников».
  3. Разметка поверхности с помощью лазерного уровня.
  4. Установка металлического каркаса.
  5. Обшивка его листами гкл.
  6. Заделка швов и финишная отделка.

Конвекция в атмосфере

Важность атмосферной конвекции велика, поскольку благодаря ней существуют такие явления, как ветры, циклоны, образование облаков, дожди и другие. Все эти процессы подчиняются физическим законам термодинамики

Среди процессов конвекции в атмосфере самым важным является круговорот воды. Здесь следует рассмотреть вопросы о том, что такое теплопроводность и теплоемкость воды. Под теплоемкостью воды понимается физическая величина, показывающая, какое количество теплоты необходимо передать 1 кг воды, чтобы ее температура увеличилась на один градус. Оно равно 4220 Дж.


Смотреть галерею

Круговорот воды осуществляется следующим образом: солнце нагревает воды Мирового океана, и часть воды испаряется в атмосферу. За счет процесса конвекции водяной пар поднимается на большую высоту, охлаждается, образуются облака и тучи, которые приводят к возникновению осадков в виде града или дождя.

Определение

Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим

Утепляющая

Это состав, в который входят различные добавки, предающие такие особенности, как:

  • морозостойкость;
  • прочность вне зависимости от количества осадков и окружающего климатического воздействия;
  • звукопоглощение;
  • высокая степень адгезии;
  • хорошая эластичность.

В зависимости от добавок, коэффициент эластичности утепляющей штукатурки при плотности 500 кг/м3 составляет 0,2.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания

При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно

Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла

Зрительно это можно увидеть на фотографии в начале статьи.

Условия эксплуатации

Теплопроводность материалов таблица, снип

Определение условий эксплуатации поможет получить объективное значение теплопроводности (параметры «А» и «Б»). Для этого нужно пройти 3 простых этапа.

Этап 1. Найдем влажностный режим помещения исходя из таблицы:

РежимВлажность внутреннего воздуха, %, при температуре, °С
До +12 °CОт +12 до +24 °CБольше +24 °C
СухойДо 60 %До 50 %До 40 %
НормальныйОт 60 до 75 %От 50 до 60 %От 40 до 50 %
ВлажныйСвыше 75 %От 60 до 75 %От 50 до 60 %
МокрыйСвыше 75 %Свыше 60 %

.
Этап 3. Соотнесем параметры, полученные на первых двух этапах и получим нужную букву условий эксплуатации:

Влажностный режим помещений зданий (этап 1)Условия эксплуатации А и Б в зоне влажности (по карте этапа 2)
СухойНормальнойВлажной
СухойААБ
НормальныйАББ
Влажный или мокрыйБББ

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Необходимость расчетов


Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Тепловые потери дома

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
    Рассчитывать придется все ограждающие конструкции
  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Перлит. ГОСТ 10832-91.

ПЕСОК ПЕРЛИТОВЫЙ на сегодняшний день является одним из самых высокоэффективных утеплителей в мире, биологически стойкий, инертный, негорючий, легкий, сыпучий материал, получаемый высокотемпературным обжигом водосодержащего вулканического стекла — перлита.

Перлит применяется в чистом виде для теплоизоляционных засыпок, особенно в кислородных комплексах, при сифонной разливке стали, в виде штукатурок, растворов, перлитоцементных, пластоперлитовых и перлитостекольных изделий, а также активно применяется как фильтрующий элемент в пищевой промышленности.

Штукатурные растворы, приготовленные из перлита

, наряду с улучшенной декоративной отделкой поверхности стен, увеличивают их теплозащитную способность, повышают комфортабельность внутренних помещений за счет высокой звукопоглощающей способности, увеличивают огнестойкость конструкций.

Штукатурные смеси на основе перлита

применяются для улучшения теплотехнических, звукоизоляционных и акустических свойств ограждающих конструкций (стен, перегородок и перекрытий) жилых, общественных и производственных помещений, ихв, выполненных из кирпича, бетонных,железобетонных, керамзитобетонных и других конструкций. Твердение растворов происходит в естественных условиях.

По сопротивлению теплопередачи слой перлитовой штукатурки толщиной 30 мм эквивалентен 15 см кирпичной кладки. Звукопоглощение штукатурки в 1,5 раза выше, чем у кирпича. Огнестойкость конструкций, защищенных перлитовой штукатуркой, в 2 раза выше, чем у конструкций с обычной штукатуркой.

По статистическим данным: применение аналогичных штукатурных растворов в жилых и общественных зданиях в скандинавских и западно-европейских странах позволяет снизить затраты тепла на отопление в пересчете на газ до 1,2-1,5 м на 1 м стены в год, что эквивалентно 15 большим (50 л) газовым баллонам для зданий со 100 м стеновых ограждений.

Применение перлита в металлургии.

Крупнейшими потребителями вспученного перлита в России являются металлургические предприятия. Более 20% этого материала потребляется металлургами. Наибольшее применение вспученный перлит нашел в изоляции блоков разделения воздуха на кислород и азот. С 1975 года по 1986 все существующие в СССР блоки разделения были переведены на вспученный перлит.

В 80-е — 90-е вспученный перлит нашел широкое применение при разливке чугуна и стали. Так вспученный перлит насыпной плотностью до 100 кг/м3 многими металлургическими заводами используется при изоляции зеркала расплава в ковшах, изложницах, литейных формах.

Вспученный перлитовый песок с размерами частиц до 5 мм упакованный в бумажные мешки забрасывается на зеркало расплава. Мешок при соприкосновении с расплавленным металлом сгорает, а вспученный перлитовый песок рассыпается по зеркалу расплава. Образованный теплоизоляционный слой препятствует быстрому охлаждению расплава. При этом примеси, шлаки, присутствующие в металле переходят в прибыльную часть, улучшая, тем самым, качество основного металла. Концентрация шлаков, примесей, газовой фазы в прибыльной части увеличивает выход годного металла на кг расплава.

Еще одним направлением использования перлита в металлургии является его применение в литьевых формующих смесях. Добавка перлита в литейные пески делает стенки форм менее теплопроводными. Это способствует медленному остыванию отливок, а, следовательно, более полному выходу примесей и шлаков в прибыльную удаляемую часть.

Часто для лучшего распределения перлита по литьевой форме используют заранее подготовленные перлито-графитовые смеси. Применение теплоизоляционных покрытий на основе перлита при производстве отливок из стали в объеме до 45 %, цветных сплавов до 30, чугуна до 10 обеспечивает значительную экономию металлов: стали — 2250 тыс. т. в год; чугуна — 150; цветных сплавов — 1,5 тыс.т. в год.

Традиционной областью применения перлита в металлургии являются футеровочные работы. В России выпускается целый ряд огнеупоров на основе вспученного перлита. Наиболее распространенным материалом этого класса является перлитошамот. Температура применения до +900oС. Среди огнеупоров этого класса перлиталь, перлитодиатомит, эпсоперлит.

Применение перлита в строительстве.

Применяется как высокоэффективный утеплитель жилых и хозяйственных построек; в виде засыпок и штукатурок, а также, в виде теплоизоляционных плит и термовкладышей в каменные и бетонные конструкции (перлито-цемент, стекло-перлит и т.д. ). При наличии декоративного покрытия отличный тепло-, звуко- и отделочный материал. Также используется для изготовления шлако-перлитобетонных камней, стеновых облегченных бетонно-перлитовых панелей и перлито-битумной плитки.

Использование перлитового песка при изготовлении строительных и теплоизоляционных материалов позволяет до 50% снизить их теплопроводность, до 40% снизить вес и соответственно габариты строительных конструкций.

Используя перлитовый песок М-100 и различные вяжущие материалы (цемент, гипс, известь), можно получить объемную массу в сухом состоянии от 300 до 1000 кг/м3, коэффициент теплопроводности от 0,07 до 0,2 Вт/м К при прочности от 5 до 75 кг/см2.

Штукатурные растворы с применением вспученного перлитового песка используются как эффективный утеплитель, при этом, 3 см такого раствора эквивалентны 15 см кирпича. Применяется перлитовый песок в качестве наполнителя и добавок при производстве огнестойких и антикоррозийных обмазок, гипсовых перегородок, в качестве заполнителя легких бетонов, в качестве теплоизоляционных засыпок при температуре изолируемых поверхностей от -200°С до +875°С.

Перлит

— незаменимый теплоизоляционный и фильтрующий материал для кислородных комплексов.

Перлит

применяется при производстве монолитной битумно-перлитной теплоизоляции стальных трубопроводов при бесканальной прокладке труб.

Песок перлитовый вспученный упаковывается:

  • в бумажные трехслойные крафт-мешки вместимостью 4 кг. марки 75 ? 6 кг. марки 100 с вагонной нормой отгрузки 100 м3 (1660 мешков)
  • в полипропиленовые мешки вместимостью 4 кг. марки 75 ? 6 кг. марки 100 с вагонной нормой отгрузки 100 м3 (1660 мешков)
  • в полипропиленовые мягкие контейнеры МКР-0,5 вместимостью 30 кг. марки 75 ? 45 кг. марки 100 с вагонной нормой отгрузки 90 м3 (180 контейнеров)

Порошок перлитовый фильтровальный выпускается согласно ТУ. Фильтровальный перлитовый порошок применяется в качестве вспомогательного фильтрующего материала для образования намывного слоя в современных фильтрах при фильтрации суспензий:

  • Технологических масел на металлургических заводах
  • Нефтепродуктов
  • Смазочных средств
  • Растворов на химических предприятиях
  • Антибиотиков * Сахарных соков и сиропов
  • Пива, вина, фруктовых соков
  • Растительных и технических масел
  • Питьевых, сточных вод и др.

Порошок перлитовый фильтровальный — фильтроперлит изготовляют из перлитовой породы по ГОСТ-25226 путём термической обработки и из вспученного перлитового песка по ГОСТ-10832

путём механической обработки. Применение фильтровального порошка отечественного производства позволило многим потребителям отказаться от импорта аналогичных материалов, что привело к снижению материальных затрат и, в ряде случаев, к улучшению качества очистки жидкостей.

Применение перлита в качестве сорбента.

При разливе нефти, мазута и других жидких углеводородов пользуются адсорбционным методом локализации разлива. При этом нефтепродукты из смеси легко выгорают. Оставшаяся сыпучая масса, состоящая из перлитового песка и коксового остатка, может использоваться на месте.

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Монтаж различных видов

  • керамзит. Применяется исключительно для полов и межэтажных перекрытий. Нужен шанцевый инструмент и дополнительные стройматериалы (стяжка или доски). Также потребуется гидроизоляционный слой в виде рубероида или другого аналогичного материала.
  • минеральная вата. Правильный монтаж предполагает использование ручного инструмента для крепления каркаса. Минеральная вата очень просто устанавливается в заранее подготовленные ячейки, но требуется равномерное крепление по всей плоскости. Гидроизоляционный слой поверх утеплителя – обязательное условие продолжительной эксплуатации. Может использоваться для вертикальных и горизонтальных поверхностей.

Обратите внимание: занимаясь монтажом любого вида утеплителя важно помнить о гидро- и пароизоляции. Защитить отделку от прямого воздействия влаги очень важно.

  • пенопласт. Плиты крепятся к поверхности дюбелями с «пятаками». Среди необходимых инструментов шуруповерт, перфоратор, строительный нож и дюбеля. Форма стройматериала и легкий вес позволяет даже самостоятельно выполнить весь объем работ за короткий период времени.
  • пеностекло. Для плотного соединения с поверхностью используются механические крепления или же растворы (цемента, мастик и других клеевых составов). Выбор зависит от материала стен. Большой популярностью пользуются блоки, но также в ассортименте имеются плиты и гранулы.
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]